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Chapter 1

Introduction

Completely automatic polygonal reconstruction of a 3D scene from a set of its
photographs is generally considered to be the holy grail of computer vision. In
recent years, new algorithms and new insights into the problem of matching
images and computing camera calibration have been gained. However, the goal
of automatically obtaining simplified polygonal model that authentically captures
main features of the scene still seems to be out of reach.

On the other hand, wide availability of consumer digital cameras and the at-
tractiveness of 3D visualizations underscore the need for software packages that
would be able to create 3D models based on digital images. Accurate reconstruc-
tions can be also used to document historic artifacts or during criminal inves-
tigations!. Currently, there are several commercial solutions such as Autodesk
ImageModeler [2] or Eos PhotoModeler [5], but they rely on heavy interaction
with the user, who basically has to mark every model vertex visible on submit-
ted photographs. When sufficient amount of point correspondences between the
images has been entered, the software calculates the camera calibration, which
also yields 3D positions of marked vertices. Polygonal model is then obtained by
joining these vertices into polygons.

The aim of this work is to find main bottlenecks of these rather manual ap-
proaches and to investigate how image processing techniques like sparse feature
matching and robust estimation can be used to ease the process of 3D recon-
struction. Complete software solution, capable of full metric reconstruction with
export of the 3D models into standardized format, has been created and is re-
leased under the GPL license. At this time, it is the only such package released
into the public domain.

Methods and algorithms presented in this work were also applied in a large
scale reconstruction project — digitization of the Langweil’s model of Prague (see
figures 1.1 and 1.2). During this project, the famous paper model was recon-
structed from approximately 300 thousand photographs. Such amount of data
clearly calls for significant automatization.

IMost prominently, methods of photogrammetry were used during the investigation of the
JFK assassination [7].



This photo is temporarily removed.

Figure 1.1: Photo of a part of Langweil’s model of Prague. Note the large number
of details and small structures like chimneys. Courtesy of the City of Prague
Museum. Used with permission.

This photo is temporarily removed. (Don’t worry, no further figures in this
document were deleted.)

Figure 1.2: A detail view of a narrow street in the model. Courtesy of the City
of Prague Museum. Used with permission.



Chapter 2

Overview

In this chapter, we describe in detail the input used by software packages that
carry out 3D reconstruction from images, investigate currently available software
solutions, describe their user interface and the qualities of the model the user can
expect. Let us begin by commenting on how image-based modeling effectively
differs from the classic 3D modeling approach.

2.1 Comparison with typical modeling software

When using typical 3D modeling software solutions, artists usually construct
models in 3D, for example by starting with scene primitives like spheres or cubes,
merging or deforming them, applying various operators, etc. until the modeled
object starts to resemble the one the artist has in mind. Currently, the industry
offers wide selection of 3D modeling products and artists are thus limited virtually
only by their imagination.

However, this approach often fails or becomes cumbersome when we want to
precisely recreate existing scenes. The freedom the artist has becomes a disad-
vantage — for example, nothing prevents the artist from modeling the windows
of a building a little wider than they are in reality. Perhaps if the artist had
been given a photo, on which the windows can be seen from perpendicular direc-
tion, she would have gotten their proportions quite right even with traditional 3D
modeling application. But we can’t expect that we’ll always have suitable photo
from which every geometric property (all lengths, angles, ...) can be directly
and easily determined.

Furthermore, if the object has been modeled in this way (e.g., by basically
having the artist to guess its shape), it’s hard to statistically evaluate achieved
precision and the models can’t be used in applications like car accident investi-
gation that require extremely realistic 3D models with verifiable precision.

Final objection to classic 3D modeling approach could be that it requires
skilled 3D artist. Using complex products like Maya [3] is demanding and signifi-
cant amount of training is necessary. Perhaps modeling could be much easier for
the user if she was guided by the photos of the object that is being constructed.



2.2 Image-based modeling workflow

When working with image-based modeling application, the user starts by submit-
ing photographs of the object that is being reconstructed. She then proceeds to
mark places on the images where important 3D vertices are visible. We also say
that she marks the position (or parameters) of projections of these vertices. The
situation is illustrated in figure 2.1.
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Figure 2.1: Simple scene (tetrahedron) and two views of the scene which might
be used for its 3D reconstruction. The user marks points on the images where
scene vertices are visible (denoted by circles). Pairs of points in different images
corresponding to the same vertex are joined by gray lines.

After marking positions of every vertex on the photos, the application com-
putes camera calibration — this includes positions and orientations the camera had
when taking each picture and also its internal parameters (focal length, radial dis-
tortion, ...). We will give precise definition of each of these camera parameters
in section 3.4, when we describe the mathematical model used to approximate
real-world cameras. Refer to figure 2.2 for a simple example of a 3D scene with
calibrated cameras.

Figure 2.2: 3D scene from the previous figure with calibrated cameras. Camera
centers, image planes and rays from camera centers to the vertices visible on each
picture are denoted.



When we know the positions and orientations in which the camera was when
taking each picture, we can estimate the position of marked vertices (if each vertex
is marked on at least two calibrated images). This calculation will be refered to
as triangulation. After that, the user can easily join the vertices into polygons.
Thus, the reconstruction of the 3D polygonal model is completed. Afterwards,
textures can be generated for the polygons using the images where the polygon
is visible, giving the model more detailed look.

In general, geometric entities more complex than vertices can be considered.
For example, the user could specify parameters of projections of second degree
curves. However, we mostly restrict ourselves to 3D vertices and their projections,
which will be refered to as points. It is important to note that the user never
directly enters any 3D information — all she does is submitting 2D data.

2.3 User input and resulting 3D reconstruction
We can now summarise that the user input includes:

e several photos of the scenes,

e coordinates X{ of i-th vertex on j-th image; some vertices might not be
visible on all photos and thus some values x! will be unknown.

The application then uses the projections x{ to solve for camera calibration
and vertex coordinates. We now might ask when, if ever, is this input sufficient
to uniquely determine the scene cameras and vertices. Several issues have to be
considered:

It should be clear that no absolute coordinates can be determined solely from
the positions of vertex projections. We simply can’t expect that we give the ap-
plication photos, mark the vertices and it outputs, for example, GPS coordinates
of individual vertices of the real scene.! The reconstruction is performed in its
own coordinate frame which probably differs from the one the user might have in
mind by (at least) global translation and rotation of the whole scene.

Similarly, we can come to the conclusion that the overall scale will be also
undetermined: when given photos of a building, it is impossible to determine its
height only from the projections — it might be ordinary several meters high build-
ing, but we might also be given photos of an extremely precise few centimeters
high toy replica of the same building taken with a macro camera. These two sets
of photos might be nearly undistinguishable even for a human being (assuming
that the replica is really detailed and precise). The effects of rescaling the scene
and positions of the cameras (and also some of their internal parameters like focal
length) cancel each other and result in exactly the same input {xf }ij. But only

1Unless, of course, these quantities have been somehow explicitly specified as part of the
input — some digital cameras store GPS coordinates of the position where the photo was taken
in EXIF data. However, we don’t consider EXIF information to be part of the input.
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one output can be (deterministically) generated from a given input, leading us to
the fact that the overall scale can’t be uniquely calculated.

We conclude that the model reconstructed from the above input will differ
from the real scene at least by a similarity transformation — that is, by compo-
sition of translation, rotation and isotropic scaling. In the next chapter, we’ll
see that given some further (but reasonable) assumptions about the cameras,
the scene can really be determined up to similarity transformation — the terms
Fuclidean or metric reconstruction are used to refer to this fact.

Another question relating to the user input is how many photos and how
many marked points (of how many vertices) are sufficient to calculate the re-
construction. One can easily see that if we mark only one vertex on all photos,
the positions of the cameras are not uniquely determined and even their relative
orientations can vary. Generally, it can be said that three images with 8 vertices
marked on all of the photos are sufficient to reconstruct the scene, although this
heavily depends on mathematical models used to represent the cameras. We leave
deeper discussion to chapter 3.

What will happen when the user submits too many projections of too many
vertices? At some point she will submit just enough projections to determine the
scene reconstruction (up to an unknown similarity transformation, of course). If
she adds another piece of input, one of the following will happen:

She either marks the next projection of a vertex exactly or she marks it im-
precisely (for example, she marks a position that is 2.5px away from the true pro-
jection). In the former case, this addition to the original input will be compatible
with the original reconstruction and it will again generate the same output. In
the latter case, however, there won’t be a reconstruction that precisely satisfies
all constraints since an incompatible one has been added to a set of conditions
that already uniquely determine the reconstruction.

Of course, it is nearly impossible to mark position of a vertex projection
absolutely precisely. When using digital images, the maximum precision is usually
1px (although in specific cases subpixel precision can be obtained) and even skilled
users will mark the vertices off by at least several pixels.

This situation is paradoxical, since one would assume that having more data
to work with will make the computation easier. What should we do in these
(often heavily) overdetermined situations? No single 3D reconstruction satisfies
the entire input. What now makes sense is to try to find among all reconstructions
the best one — that is, the one that minimizes some error metric. Most often, the
error metric is based on statistical method of maximum likelihood estimation:
from the set of all 3D reconstructions, we select the one that is the most probable
given the supplied measurements {x’}; ;.

In fact, we almost always work with overdetermined input, since this results
in much more precise reconstructions. Remarkably, this approach can even be
robustified (see section 3.12) so that the output is not affected if part of the input
is corrupted (some of the points have been marked completely incorrectly).
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Besides the projections of the scene vertices, several other types of input can
also used to contrain the reconstruction. Often used are the following:

e the information that all pictures were taken with a camera with the same,
but perhaps unknown, focal length (i.e., with the same ”zoom”),

e the focal lengths of the cameras used to take each picture,

e affine properties of the scene — e.g., the fact that two scene planes are
parallel,

e Euclidean properties of the scene — e.g., the fact that two scene planes are
perpendicular.

These constraints, especially the ones concerning internal camera parameters, are
of special importance since they can be used to determine scene’s metric structure
— this is discussed in the section 3.11.

The information about focal length of the camera used to capture a particular
photograph can often be retrieved from its EXIF information. We must note
however, that focal lengths from EXIF are often imprecise, although they have
been used in practice, mainly as an initial guess to be further computationally
optimized (for example in Microsoft’s Photosynth [26]).

2.4 Currently available software

Before the release of our application, there was no open source image-based mod-
eling tool available. There are several proprietary commercial solutions, though.

The most commonly used are Autodesk ImageModeler [2] and Eos PhotoMod-
eler [5]. Their workflow is very similar and follows the one described in section
2.2. The user creates vertices and marks them on several images. After enough
point correspondences are entered, the application computes camera calibration.
Once the cameras are calibrated, the application uses this knowledge to guide
the user by displaying epipolar lines — this is a line on which the projection of
a vertex must lie given it’s position on another image (see the section 3.7 for a
detailed discussion).

Typically, the user of ImageModeler has several (2 or 4) photos displayed on
her screen. A vertex is created by marking it for the first time. She then proceeds
to mark the vertex on the remaining images. We argue that this workflow is not
optimal — it requires the user to constantly switch her attention between different
photos. Often, it can be demanding to figure out from which place the photograph
was taken, especially for symmetrical scenes.

In our application, a single photo is displayed on the user’s screen and she is
encouraged to mark multiple vertices before proceeding to the next one, which
leads to much smoother user experience.

A significant disadvantage of ImageModeler and its XML-based .rzi file for-
mat is that it doesn’t save 2D-to-3D correspondence between the constructed
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scene and its photos. The vertices estimated by ImageModeler from the image
correspondences are called locators. Once they are estimated, the user can use
them to create different scene primitives. However, no relation between the scene
vertices and the locators from which they were created is retained. This implies
that when the user decides to adjust an imprecisely positioned locator (for exam-
ple by marking its position on another photo), the locator is recalculated, but the
position of the vertex created from it is not adjusted. Moreover, the knowledge
of where each scene vertex is visible could be valuable when generating textures
for individual polygons, since the marked positions are visually more precise then
mere reprojections — these two approaches to texturing are compared and imple-
mented in [22].

Another image-based modeling software package is MetaCreations’ Canoma
[4] (eventually acquired by Adobe and since then discontinued). This now defunct
application uses completely different and very user-friendly workflow based on the
influential thesis of Paul Debevec [8]. The user interface can be seen in figure 2.3.
The user creates the scene by placing various primitives like cubes or cones on it.
Parameters of these primitives can be marked on the images — for example, the
user can take a cube and specify where one or more of its vertices are visible (the
edge incidence is also supported). Relations between the scene primitives can be
entered, e.g. the user can stack up two cubes, one on the top of the other.

In this way, Canoma is able to reconstruct a scene even from a single photo.
Geometric properties of the primitives are taken into account during the optimiza-
tion. Thanks to that, a cube reconstructed in Canoma is indeed a perfect cube,
whereas the one reconstructed by other image-based modelers will be slightly
imperfect since the positions of the cube’s vertices are skewed by some amount
of noise. On the other hand, Canoma has problems when modeling scenes where
its predefined primitives are not present.

e Qe (T T b AN &

Figure 2.3: Canoma’s intuitive Ul with a photo and a list of primitives.
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2.5 Example

When taking photos to be used for image-based reconstruction, several rules
should be remebered to achieve good precision. Refer to appendix A for a list
of the most important guidelines. The following input images would be ideal for
reconstruction of the building on them:

Figure 2.4: Six images of a building on Lesser Town Square to be used as input
for image-based modeling.

Figure 2.5 below shows untextured and textured polygonal model that can
be quickly (within 10 minutes) created using the software developed as a part of
this thesis. The screenshot on the left also shows automatically reconstructed 3D
point cloud of the scene.

Figure 2.5: Wire frame and texture views of the scene reconstructed using our
software package. Pyramids in the left image represent calibrated cameras.

14
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Figure 2.6: Two views of a polygonal 3D model obtained from 5 of its photos.

In figure 2.6, we can see another example of a 3D reconstruction. Several
remarks about its quality can be made. The side view in figure 2.6(a) looks
relatively realistically. The top view in figure 2.6(b) reveals two issues. The
textures of some of the polygons (e.g., green roof above the entrance) are of low
quality. This is caused by the fact that a photo on which these polygons would be
visible from acceptable angle wasn’t available. We can also see that only one half
of the building has been reconstructed. Photos of the other one are hard to obtain
from ground because of occlusions by other architecture. Still, polygonal model
of the other side might be added using a conventional 3D modeling software by
exploiting building’s symmetries — see [8] for a detailed treatment of how this can
be implemented as a part of an image-based modeler.

We can conclude that while taking photographs might seem to be quick and
straightforward, some effort should be put into planning which photos to take so
that all scene vertices are clearly visible and distinguishable and all polygons can
be seen without significant occlusions.
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Chapter 3

Multiple View Geometry

As we have seen in section 2.2, our application will be given projections of vertices
on images that were taken by a camera from different viewpoints. From this 2D
input, we need to compute 3D coordinates of the vertices and 3D parameters of
the cameras (their positions, orientations, ...) used to aquire the images. This
problem is sometimes termed structure from motion, since the structure of the
scene (3D vertices) is determined by observing the apparent motion of the vertices
on images taken from different positions.

This problem has been investigated during the last 150 years by photogram-
metric community [7], which mostly aimed to create precise maps from pho-
tographs, and later by the computer vision community. Current state-of-art so-
lution uses many results from projective geometry, linear algebra, statistics and
nonlinear programming. When considering this problem, several questions might
arise about how hard it is:

e Will there be a unique solution? Are coordinates of vertices and parameters
of cameras uniquely determined by their projections?

e [s there computationaly effective algorithm to solve the problem?

e [s there numerically stable algorithm?

Answers to these questions are unfortunately negative. There will never be a
unique solution, we’ll work with parameter family of solutions from which we’ll
select one as the result of the computation. Current state-of-art solution in-
volves solving instances of problems that are NP-complete. For some of them,
no numerically stable algorithm is known.

In this chapter, we list essential concepts from projective geometry and linear
algebra, introduce the mathematical model used to approximate real-world cam-
eras and give formal mathematical definition of the problem. We give high-level
overview of how the problem can be solved and describe individual algorithms
used in the computation. Discussion of our actual implementation is deferred
until chapter 5.

16



3.1 Projective geometry

Projective geometry is heavily used in 3D computer vision. There are several
reasons for its popularity. First of all, it is a mature mathematical discipline
with plenty of deep results. Its connections with linear algebra allow us to use
algebraic expressions (mostly vectors and matrices) to formulate problems and
describe solutions. However, the usage of algebraic projective geometry has its
drawbacks too [17]. In the following sections we briefly describe the most impor-
tant definitions, algorithms and results. Details can be found in [14].

Projective geometry can be defined as the study of properties of projective
plane that are invariant under projective transformations.

Definition 3.1.1. Projective plane consists of a set of points X, set of lines L
and incidence relation « C X X L, that satisfy the following projective axioms:

1. Given any two distinct points x1,xo € X, there is exactly one line | € L
incident with both of them.

2. Given any two distinct lines ly,ls € L, there is exactly one point v € X
incident with both of them.

3. There are four points such that no line is incident with more than two of
them.

Definition 3.1.2. Projective transformation (also called homography) is invert-
ible mapping h from the set of points X of a projective plane to itself such that
three points 1, xq, x3 lie on the same line if and only if h(x1), h(za), h(zs) do.

We will be mostly interested in the real projective plane, which can be ob-
tained from the classic Euclidean plane R™ by extending it with points at infinity.
The resulting plane will be denoted by P". For n = 3, we speak about points and
planes instead of points and lines.

The points on P™ can be elegantly defined using homogeneous vectors from
R"\ {0}, which are nonzero vectors defined up to an arbitrary nonzero scale
factor. For example, the vectors (1 3 —2)T and (2 6 —4)T represent the
same point. Likewise, lines in P? are represented using nonzero homogeneous
vectors from R3 and planes in P? using nonzero homogeneous vectors from R*
(lines in P are harder to represent, see [14, pg. 68-73] for an overview of possible
methods).

The incidence relation is defined as follows: a point x lies on line 1 if and only
if xT1 = 0. Other entites can be also represented as homogeneous vectors or ma-
trices (i.e., nonzero matrices defined up to an arbitrary nonzero scale factor). For
example, conics are represented by homogeneous symmetric matrices ¢ € R3*3
and point x lies on this conic if and only if x"Cx = 0.

Specifically, in the so called canonical coordinates, Eucledian point (x y)T
is represented by any of the 3-vectors of the form (kz  ky k:)T, k € R\{0}. The
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points at infinity are represented by nonzero vectors of the form (/m: ky O)T,
k € R \ {0}. Note that the line (0 0 1)T contains all points at infinity. For
this reason, it is called the line at infinity and denoted 1.

It is this simple extension which makes great simplifications possible. For
example, in P2, every pair of distinct lines has exactly one intersection (see the
second axiom in definition 3.1.1). This is not true in Euclidean geometry, because
distinct parallel lines have no intersection (in P2, parallel lines intersect on one of
the newly added points at infinity). Similarly, in projective geometry every pair of
distinct conics intersects in 4 points. In Euclidean geometry, two distinct elipses
intersect in up to 4 points, but two distinct circles form one of the special cases —
they intersect in at most two points. In P2, the additional two intersections are
the so called absolute or circular points, which are points on 1,, with canonical
coordinates (1 +1 O)T. It can be easily verified that these two complex infinite
points lie on every circle.

These facts about P? can be straightforwardly generalized into P3. Points
of P? are represented by nonzero homogeneous vectors X € R* \ {0}. The
role of lines is replaced by planes, which are again represented by homogeneous
vectors 7 € R* \ {0}. Specifically, the line at infinity becomes the plane
at infinity, which will be denoted by m,, and which has canonical coordinates
(O 0 0 1)T. Absolute points are replaced by the absolute conic Q,, — more will
be said about this entity in the section 3.11. Second order surfaces in projective 3-
space are called quadrics and are represented by homogeneous symmetric matrices
Q € R4, As with conics, a point lies on a quadric Q if and only if X'QX = 0.

3.2 Projective reference frame

It is important to note that the definition of projective plane doesn’t distinguish
between finite points and points at infinity. If we're given a set of points in
projective plane P? (e.g., as an output of an algorithm that uses only results
from projective geometry), we can’t be automatically sure where lies the line at
infinity. This means that we can’t decide which pairs of lines are parallel and
which aren’t — in other words, we can’t make affine measurements. Similarly,
we can’t be sure what are the coordinates of the absolute points and thus can’t
distinguish between circles and (say) ellipses. More precisely, we can’t carry out
Euclidean measurements such as determining angles between lines. Indeed, all
these concepts lie outside of the scope of projective geometry. It can’t tell us
anything about them, since it studies only the quantities that are unchanged
by projective transformations and both parallelism and angles can very well be
affected by the application of a general homography.

We first need to decide which line should be interpreted as 1., and which two
points on it are the absolute points. After we know their coordinates in current
projective frame, we can apply a refining projective transformation that moves
them to their canonical form. Affine and Euclidean measurements can then be
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easily carried out.

If we would ignore this fact and immediately transformed all points to “canon-
ical” form by simply dividing their vectors by the last coordinate and interpreting
the first two as coordinates of a Euclidean point, the result would differ from the
right one by an unknown projective transformation since the data we have gotten
have been in their own (unknown) projective frame.

3.3 Projective transformations

Homography in P" was introduced in definition 3.1.2 as a transformation that
maps lines to lines. Algebraically, it can be expressed by homogeneous nonzero
nonsingular matrix H € R™+>*®+D " Under this mapping, point x is transformed
to point X' = Hx and line 1 is transformed to I’ = H=Tl. We can indeed verify that
if the point x lies on the line 1 (or equivalently, if x'1 = 0), then the image of the
point x under the mapping H lies on the image of the line I:

XT'=Hx)"H ) =x'H'H "I=x"T1=x"1=0.

The set of all homographies forms a group since the inverse of a homography
and the composition of two homographies are again homographies. Within this
group, two important subgroups can be identified:

o Affine transformation is a transformation fixing the line or plane at infinity
(as a set, not pointwise). Algebraically, it can be expressed in canonical
coordinates by matrix with the last row composed of zeros, except for the
bottom right value, which is equal to 1. Thus, for P? and P3, it is represented
by matrices:

" a1 aip a1zt
a1 a2 U1

(g1 G2 A3 1o
a921 A922 t2 and a a a ¢

31 Q32 as3 t3
0 0 1

0O 0 0 1

, respectively.

After applying affine transformation, parallel lines remain parallel.

o Similarity transformation is an affine transformation, for which the upper
left submatrix (formed by removing the last row and last column) is or-
thogonal matrix multiplied by a scale factor s € R. In P? and IP3, it can be
equivalently defined as a transformation that fixes the absolute points and
the absolute conic, respectively. Angles and ratios of lengths stay invariant
after applying a similarity transformation.

Every homography can be decomposed into the following chain of transfor-

mations:
I O||K O|]|sR t
i =HpHalls = [VT 1] loT 1] [OT 1]’

19



where H; is a similarity transformation, H, is an affine transformation, I denotes
identity matrix, 0 is zero vector and v, t are arbitrary vectors. This can be proven
and carried out simply by applying the QR decomposition.

3.4 The projective camera

Previous section was concerned with transformations from P to P". Similarly,
we can introduce transformations from P” to P™, where m,n € N. Of particular
interest will be the mapping from P3 to P2, since it is suitable to approximate
real-world cameras, which take planar images of three-dimensional scenes. This
mapping can be represented by a nonzero homogeneous matrix P € R3*4 of rank
3. Provided that the left 3 x 3 submatrix of P is nonsingular, P can be decomposed
as:
P=K[sR t].

Note that this is essentially the same decomposition as in the previous section.
The assumption of nonsingularity is needed to carry out the QR decomposition.
However, we’ll use a slight variation:

P = KR [I —6] : (1)

where C € R3. In canonical coordinates (i.e., when we're in Euclidean space),
these entities have the following interpretation:

T. o .
o C= (x Y z) is the camera center in inhomogeneous coordinates.
e R is a rotation matrix defining the orientation of the camera.

e K is an upper-triangular matrix, which determines internal camera param-
eters such as the focal length. For this reason, it is called the internal
calibration matrix of the camera.

The matrix P is a homogeneous matrix and so the matrices P and AP, A € R\
{0}, represent the same projection (and the same camera). In this decomposition,
C is inhomogeneous vector and the scale of R is fixed (since it is a rotation matrix).
Thus, the effect of multiplying P with A is propagated into K. This ambiguity
can be removed by requiring that K33 = 1. The equation (1) is then satistied
only up to an arbitrary nonzero scale factor. Moreover, the ambiguity of the QR
decomposition is removed by requiring K17 > 0,Kq > 0.

The matrix K now has the form:

fm, s x
K= 0 fmy, w
0 0 1

The interpretation of these values is the following:
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e m, and m, represent the number of pixels per unit distance in image co-
ordinates in the x and y directions. The ratio a = m,/m,, is termed aspect
ratio.

e f is the focal length of the camera in the same units that were used in the
definition of m, and m,,.

e s is the skew parameter. Nonzero values of this parameter indicate that the
pixels of the camera are not perfect rectangles, but are effectively skewed.

e 1y and gy, are the coordinates of the principal point on the image plane
(usually in pixels). This point is the image of the principal ray (the ray
going through the camera center perpendicularly to the image plane) in the
image coordinate system.

Typical cameras have zero skew (i.e., their pixels are very near to perfect
rectangles) and the aspect ratio is usually nearly 1.0 (i.e., the pixels are nearly
squares). Principal point is commonly assumed to be in the middle of the image,
although this can deviate for cheaper cameras. Aside from pixels being imperfect
rectangles, nonzero skew can be also caused by imperfect alignment of the camera
lenses. A typical example of the internal calibration matrix for a camera which
produces images with the resolution 2848pxx2134px with horizontal field of view
60°:

2466 0 1424
K= 0 2466 1067
0 0 1

Real cameras deviate from the introduced model in several ways. Most im-
portantly, real cameras don’t generally project straight lines in scene as straight
lines. They appear to be slightly curved in the images. This is caused by barrel
or pincushion distortion — a nonlinear distortion of the image. In this work, we
ignore this deviation and assume that the photos used as input for the reconstruc-
tion either are not significantly deformed or were corrected using a third-party
application. Practical results indicate that our implementation produces good
results even without nonlinear correction.

3.5 Structure from motion

The problem of structure from motion is that of estimating the parameters of 3D
geometric entities by observing apparent motion of their projections on several
images taken from different viewpoints.

Some properties of the input for this task were discussed in section 2.3. Here
we reformulate the problem in terms of algebraic projective geometry. The
marked projection of i-th vertex on j-th image will be represented by nonzero
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homogeneous 3-vector x!, scene vertices by nonzero homogeneous 4-vectors X
and the cameras will be modeled by projection matrices P;.

To summarise, we have the following meassurements:

e coordinates x{ of images of the unknown vertices projected using the un-

known projection matrices.

These values can be submitted manually by the user or obtained using auto-
matic matching algorithms (discussed in the next chapter). Some of the values
xg are left undefined, e.g., as a result of occlusions. From this input, we want to
calculate:

e vectors X; representing the 3D vertices,

e projection matrices P; representing the camera projections.

The projection of the vertex X using the projection matrix P is given by
x = PX. However, points, vertices and projections are all represented by homo-
geneous vectors and matrices and thus this equation will be satisfied only up to
an (unknown) scale factor A € R\ {0}. If all of the measurements were exact
and all computations done on a computer with infinite precision, then solving
the following set of nonlinear equations would lead to an exact solution for X;
and P;: '
\ijx! =P;X;, (2)

where \;; € R\ {0}.

Two issues, informally introduced in section 2.3, have to be considered:

It can be easily verified that the output is not uniquely determined by the
input. Indeed, we can take any non-singular 4 x 4 matrix H and replace each
vertex X; by HX; and each projection matrix P; by P;H™!. We immediately see
that if the original matrices satisfied equations (2) then so do the modified ones:

/\ijxg = Psz = PjI4XZ‘ = PjH_lHXZ'.

If we carry out the reconstruction based on this set of equations, then the result
will differ from the real one by an unknown homography H. Such reconstruction is
called the projective reconstruction, since only scene properties that are projective
invariants (for example, ratios of areas) can be meassured. This is insufficient for
almost all practical applications, since a general homography affects affine and
Euclidean properties of the scene like parallelism. Thus, scene planes that should
be parallel or perpendicular will likely lie in general positions. Such deformation
of the scene is clearly unacceptable for example when using the reconstruction for
visualization purposes. To identify the homography H that establishes the correct
projective frame, we’ll have to exploit non-projective properties of the scene or
cameras.

For example, we could have the user explicitly pick several pairs of planes
that are parallel. Since parallel planes intersect on the plane at infinity .,
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we could identify the coordinates of 7., from these intersections and then apply
homography that transforms the plane to its canonical position. Affine properties
of the scene would then be preserved.

Another possibility is to derive Euclidean properties of the scene from certain
assumptions about the scene cameras. Typical real-world digital cameras usually
have approximately square pixels and thus have zero skew and aspect ratio 1.0.
This can be used calculate the refining homography that takes the reconstruction
into Euclidean projective frame.

Since we aim to create a software package that is as automatic as possible, we
choose the second approach over the first one, which requires manual assistance
of the user. The second approach, termed autocalibration or self-calibration, has
some disadvantages too. The main problem is that it generally requires to find
global minimum of a highly nonlinear function with many local minima [15].
Details about the autocalibration algorithm used in our software package are
given in section 3.11.

The second issue is that in real scenarios, the measurements will always have
only finite precision and will be corrupted by noise. No single reconstruction then
satisfies all equalities (2). Still, we can try to find among all reconstructions the
best one. One of course has to define what “best” means. Generally accepted
method is to seek the maximum likelihood (ML) solution, given some assuption
about the probabilistic distribution of the noise. Gaussian distribution is usually
used because it is easy to handle analytically.

Formally, we try to find a solution that minimizes some cost function defined
on the scene parameters {X;}; and {P;};. This cost function assigns a non-
negative real value (cost) to the scene parameters, which is proportionate to how
well the parameters match the user input. Under the assumption that the noise
follows isotropic mean-zero Gaussian distribution (independent and identical for
every measured point), the ML solution is obtained by minimizing the following
expression:

mandPX x7) (3)

where d(x,y) denotes the geometric distance between the points x and y. The
points {X;}; and cameras {P;}; that minimize the sum of squared geometric
distances between a measured points {x};; and the projections P;X; are the
most probable reconstruction under the given assumptions. The reader can refer
to [14, pg. 633] for an overview of cost functions for various distributions of noise.

Unfortunately, solving such instances of nonlinear programming is theoreti-
cally problematic. Nonlinear programming is generally NP-hard and it can be
shown [13] that so is this special case. Since the function to be minimized in (3)
is differentiable, one approach to find the optimal solution would be to compute
all its stationary points and among them find the one that leads to the minimal
cost. If the cost function is rational (which is true for cost functions based on
most of the noise distributions), then so are the derivatives. Equating them to
zero leads to a system of polynomial equations. However, this solution is reason-
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able only for problems of minimal size, since the degree of the polynomial to be
solved grows cubically [15] and finding roots of such polynomials is numerically
problematic. The intractability of using this method in almost all cases has been
noted by photogrammetrists early on in the 1920’s [7].

The approach used in practice is as follows:

1. find an approximate solution that minimizes a suitable function similar
(although not identical) to our cost function,

2. use iterative numerical methods to minimize our cost function using the
obtained approximate solution as a starting point.

In the following sections, we describe some of the techniques used to construct
the initial approximate solution and in section 3.10 describe an optimization
algorithm commonly used to refine the initial solution so that it approaches the
optimal one. This optimization is termed bundle adjustment in literature. Its
main feature is that it corrects the camera parameters and the positions of the
vertices simultaneously.

3.6 Construction of the initial solution

Even for a reasonably simplified cost function, there still isn’t a single straightfor-
ward way to obtain an approximate solution to our problem. It can be however
constructed by employing a series of algorithms, each of which carries out a small
part of the computation.

The computation can be started by estimating projection matrices P;, P; for an
image pair with at least 8 correspondences. This is done using the fundamental
matrix described in the next section. Aimed with the knowledge of projection
matrices for an image pair, we can estimate the position of the vertices visible
on both of the images using vertex triangulation described in section 3.8. In this
way, we can obtain starting point for the computation of the initial solution.

If there is a camera in our dataset that still is not estimated (its projection
matrix is unknown), but on which at least 6 already estimated space points are
marked, we can apply the camera resection method of section 3.9. Using it, the
projection matrix is computed from the known coordinates of the vertices and
their marked projections. After it is estimated, triangulation is once again used
to calculate the vertices that are visible on at least 2 currently known cameras
(some of them might have been already calculated, but the triangulation is done
again to take into account the newly gained knowledge).

Of course, it is not evident which image pair should be used to bootstrap the
computation and in which order the camera resections and vertex triangulations
should be performed to achieve the optimal numerical stability and precision.
There even is a danger of computing completely incorrect initial solution (one
that leads to approximation far away from the global minimum), when the data
are in a degenerate configuration. For example, the projection matrix cannot be
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uniquely determined when we perform camera resection from vertices lying on a
single scene plane.

Fundamental matrix, resection and triangulation are not the only possible
building blocks for construction of the initial solution. For example, three pro-
jection matrices can be estimated at once when projections of 6 points are known
on all three images using trifocal tensor described in [14, pg. 363-408]. Matrix
factorization using the SVD [14, pg. 436] can produce near-optimal results at es-
timating n projection matrices when the cameras used to obtain the images had
long focal lengths (and thus can be approximated by affine cameras — ones that
have the projection center located at infinity). We refer the reader to [14] for an
indepth discussion of possible techniques.

The strategy used to construct the initial solution in our implementation is
described in the section 5.3.

3.7 The fundamental matrix

The relation between two views in projective space P? can be neatly expressed
using a 3 x 3 real matrix F of rank 2 called the fundamental matriz.

Consider a point X € P? and two different cameras P; and Py (to avoid a
degenerate configuration, suppose that X and the two camera centers are not
colinear). Furthermore, denote the image of X in the first view by x. What can
x tell us about the position of this point’s projection in the second view? The
fact that we know the projection of X in the first view restricts its position to a
line in P? going through the first camera’s center. This line is projected onto the
second image as line I'. The image of X in the second photo, denoted by x’, has
to be somewhere on it.

The fundamental matrix expresses precisely such mapping between points in
one view and lines in another.

Definition 3.7.1. The fundamental matrix F for a pair of images is a 3 X 3
homogeneous matriz which satisfies

xTFx =0
for all corresponding points x < x'.

By multiplying a point x from left by F we get a line I' = Fx in the second
image. The point x’ lies on this line since x'7l' = x'TFx = 0. The line 1’ is called
the epipolar line.

We now prove the existence of such matrix. This algebraic proof follows [14,
pg. 243], where the reader can also find its geometric counterpart.

Theorem 3.7.2. The fundamental matriz for two images acquired by cameras
with non-coincident centers exists and is a uniquely determined homogeneous ma-
trix of rank 2.
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Proof. The set of points in space that map to a given point x € P? in a camera
image is a line in P?. To identify this line, we find two distinct points in space
that lie on it. One of them is the camera center C, since every projection ray goes
through it. Another point can be obtained using pseudo-inverse of P. This is a
matrix PT = PT(PPT)~!. The pseudo-inverse of P has the property that PPT = I
since PPT = (PPT)(PPT)~! = I. The point P*x also lies on our line. Indeed, it
projects to the point x:
P(PTx) = Ix = x.

By projecting these two points using the second camera, denoted by P, we
get points P’C and P’P*x in the second image. It can be easily verified that a
line going through points x and y is x x y, where x denotes the cross prod-
uct. The epipolar line is thus I’ = (P'C) x (P'P™x). The cross product can
be straightforwardly rewritten as matrix multiplication, which leaves us with
' = [P'C]« (P'P")x, where [a]y represents the following skew-symmetric matrix:

0 —das (05}
as 0 —Q
—a9 aq 0

It follows that the matrix F is equal to [P’C],(P’P*) and its rank is 2 (since
non-zero 3 X 3 skew-symmetric matrix clearly has rank 2). O]

Our main motivation for using and computing fundamental matrices is that
it allows us to extract the projection matrices for the camera pair. The following
result shows how:

Theorem 3.7.3. Let F be a fundamental matriz and S any skew-symmetric ma-
trixz. Then F is the fundamental matriz corresponding to the following camera
pair:

1 0],

P

P'=[SF €],

where € is nonzero vector such that € F = 0 (assuming that the matriz P’ has
rank 3).

To prove the theorem 3.7.3, we need the following lemma:

Lemma 3.7.4. A non-zero matriz F is the fundamental matriz corresponding to
a pair of camera matrices P and P if and only if P'TFP is skew-symmetric.

Proof. The condition that P'TFP is skew-symmetric is equivalent to X TP'FPX = 0
for all X. Letting x = PX and x' = P'X transforms this into x’Fx = 0, which is
the defining equation of the fundamental matrix. m

Now that we’'ve proven the lemma, we can prove the result 3.7.3:
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Proof. Using the lemma 3.7.4, we only have to check that the following matrix is
skew-symmetric:

sF oTF[T 0] = {FTSTF 0] _ {FTSTF 0] |

¢'F 0 0T 0
which can be easily verified. n

Thanks to this result, once we calculate the fundamental matrix for an image
pair, we can compute the corresponding projection matrices. What now remains
is to show how to compute the fundamental matrix from corresponding points.

This can be done using linear algebraic methods when at least 8 point matches
are given. Each pair of corresponding points (x, x’) leads to the following equation
constraining the unknown matrix F:

xTFx = 0.
Assuming x = (z,y,1)T and x' = (2/,%/,1)T, it can be rewritten as:

d'wfin+ayfro + 2 fis+ Y for +y'yfor + Y fos + 2 fs1 +yfse + fs3=0.

A set of n correspondences thus results in the following system of linear equations:

! / ! / / /
riry o o vt oy oy o rno oy 1

Af = f=0,

/ / / / / /

where f is a 9-vector made up from the entries of F in row-major order.

The fundamental matrix F is a homogeneous matrix, which means that it
is defined only up to scale. Thus, even when the number of equations is large
(n > 8), the matrix A should have one parameter right null-space whose generator
is the nonzero vector f used to construct the desired matrix F. When we have
9 or more correspondences, it might happen that the matrix A becomes non-
singular due to noise in image coordinates. In such cases there is no nonzero
vector f that satisfies Af = 0. What makes sense is to find the vector that
minimizes |Af| subject to the constraint |f| = 1. This vector f is the singular
vector corresponding to the smallest singular value of A [14, pg. 588].

After finding the unit 9-vector f minimizing |Af| and rewriting f into 3 x 3
matrix F, we have to enforce the fact that the fundamental matrix must have
rank 2. It could very well happen that our matrix is regular and thus does not
represent any valid epipolar geometry. In such cases, we want to find the closest
matrix (in Frobenius norm) with rank 2 to the one calculated in the previous
step.

The rank property can be easily enforced using the SVD: let F = UDV' be
a decomposition of the matrix F into the product of matrix U with orthogonal
columns, diagonal matrix D (with the elements on the main diagonal being in
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decreasing order) and orthogonal matrix V. Furthermore, let D’ be the matrix
obtained by taking D and equating the bottom right element to zero. It follows
from the norm preserving property of orthogonal matrices that the closest rank
2 matrix to F is UD'VT.

The resulting algorithm to obtain projection matrices Py, P, for an image pair
from a set of its point correspondences thus follows this outline:

1. Given n > 8 point correspondences, construct the n x 9 matrix A.

2. Find the singular vector f of A corresponding to its smallest singular
value.

3. Construct the matrix F from f.
4. Reduce the rank of F to 2 using SVD as described above.

5. Extract the projection matrices Py, P, using the result 3.7.3.

3.8 Triangulation of vertices

We now turn to the problem of estimating the position of a point in space from
several (at least two) of its known projections. Assume we are given projection
matrices Py,Ps,...,P, and the coordinates xi,Xs,...,x, of projections of this
point on respective cameras. We want to find such a point X in P? that best fits
these measurements. Such computation is called triangulation.

As in section 3.5, we would ideally like to find a point that minimizes the sum
of squared reprojection distances:

] . . 2
min Z d(P; X, x;)".

i=1l..n

This can be viewed as a flavour of the general (and NP-hard) problem to minimize
(3) from 3.5, with the provision that the camera matrices P; are fixed and only the
point X is allowed to vary. However, this special case is somewhat easier to solve
optimally. An efficient algorithm for the case of two images is known since [16],
while recent breakthroughs in applications of branch and bound method in Second
Order Cone Programming have lead to optimal algorithm for triangulation from
a general number of images [18].

In this section, we describe an algorithm based on linear algebra [14, pg. 312].
As such, it doesn’t minimize the geometric reprojection error but only its ap-
proximation. It has the advantage that it can be readily implemented when we
have a library with appropriate linear algebraic functions available. We derive
this method for the case of two photos (n = 2). Note however that it can be
straightforwardly generalised.
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Since we are dealing with homogeneous quantities, the projection equation
x; = P; X is satisfied only up to an unknown scale factor. This can be eliminated
by rewriting the equation using cross product: x; x (P;X) = 0. Denoting the
j-th row of the matrix P; by 4-vector pgT and letting x; = (x4, y;, w;) allows us to
write this condition as:

z1(p}'X) — (p1'X) =0
y(p7'X) — (p"X) =0
z1(p]'X) = y1(py' X) =0
These equations are linear in X and only two of them are independent. Con-

straints from both images thus result in the system of linear equations AX = 0,
where

SUlP:fT - P%T
_ |wpi’ —piT
B $2P§T - P%T
$2P3T - PgT

In general case, A will be 2n x 4 matrix formed by stacking up constraints from
all known projections.

The situation is now similar to the previous section. If all measurements were
exact, the matrix A would have one dimensional right null-space and our desired
nonzero vector X would be its generator. Due to noise in the image coordinates
and in the entries of the projection matrices (caused for example by inaccurate
input from the user), the matrix might become regular. As in the previous section,
we once again take the unit singular vector corresponding to the smallest singular
value as our estimate for X, since it minimizes the quantity |[AX| (subject to the
constraint |X| = 1, which prevents X from approaching 0).

The point X estimated in this way will likely differ from the one minimizing
the reprojection error. It should however be close enough to be succesfully refined
using nonlinear techniques referenced in section 3.10.

3.9 Camera resection

We now consider a situation when we have space points X, Xo, ..., X, estimated
and their projections onto an image are known. Camera resectioning refers to the
computation of the projection matrix P for this image. Once again, we describe
a linear technique [14, pg. 178] used to provide an estimate to be optimized
using nonlinear iterative method. We note that, as in the case of triangulation,
efficient globally optimal algorithm can be obtained using Second Order Code
Programming [18].

The projection of the point X; will be denoted x;. Each X; < x; correspon-
dence adds a constraint x; = PX; on P — again, satisfied only up to an unknown
scale factor). As in the previous section, the multiplicative ambiguity is removed

29



by taking cross product. This transforms the equation to x; x PX; = 0, which
can be rewritten as:

U)ZX;I— OT —.TIX;I— P2 = 0,
—yZXZT {L‘ZX;F 0 pP3

where P7 is the j-th row of P and the point x; is written as (;,y;, w;)". The
third equation is a linear combination of the first two, so we gain 2 independent
constraints from each correspondence. The projection matrix has 11 degrees of
freedom (it has 12 entries, one degree is removed for scale) and thus at least 6
correspondences are necessary to solve for P.

This is done in a way analogous to the previous two sections — we pick the
singular vector of the assembled matrix corresponding to the smallest singular
value. Again, this doesn’t minimize the geometric error, but the algebraic one
and should be later refined using iterative nonlinear methods.

3.10 Nonlinear optimization

Using the results from previous sections, we are able to acquire an initial solution
which doesn’t minimize the geometric error, but should be close enough that the
optimal solution can be obtained through local optimization. We now informally
introduce iterative method commonly used to achieve this and refer the reader
to for example [27] for formal derivation.

Numerical mathematics offers two classic algorithms used to optimize differ-
entiable functions: the Gauss-Newton algorithm and the gradient descent. Both
algorithms proceed by taking an initial solution and iteratively improving it us-
ing local approximations of the function. After a given number of iterations, the
process stops and outputs the improved solution which should be closer to the
true minimum.

The Gauss-Newton method proceeds by approximating the function using
quadratic Taylor expansion around the current position. Global minimum of this
quadratic approximation is chosen as the position for the next iteration. Gradient
descent method computes the direction of the steepest descent in each position
by evaluating the partial derivatives. A step of certain length is then performed
in this direction. If this new position fails to be better than the current one, a
smaller step is tried. Since the function is differentiable, a small enough step is
guaranteed to improve upon the current iteration. This is the main advantage
of the gradient descent method. On the other hand, its convergence can be very
slow when a lot of small steps are performed. The Gauss-Newton method usually
has a very good performance, but can run into problems when the function does
not locally resemble a quadratic one.

This leads us to the Levenberg-Marquardt algorithm, which combines these
two approaches. It interpolates between the step taken by the Gauss-Newton
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method and the gradient descent, favoring the former one as long as it succeeds
to decrease the value of the cost function.

A quick description of the Levenberg-Marquardt algorithm can be found in [9],
while [27] offers an in depth treatment and includes a discussion of numerical
stability and pre-conditioning. Our software package uses open source implemen-
tation of this algorithm, described in technical report [19].

3.11 Awutocalibration

As we have already noted in section 3.5, when we perform a reconstruction based
only on the projection equations (2), the result will differ from the true metric
reconstruction by an unknown general projective transformation. This projective
reconstruction almost always won’t have the plane at infinity 7., in its canonical
position (0,0,0,1)" and thus scene lines and planes that should be parallel will
not appear as such. In other words, affine and Euclidean properties of the scene
won’t be preserved.

Projective geometry doesn’t offer us any tools to deal with this problem, since
it is only concerned with properties of the projective plane that are invariant
under projective transformations. We are going to exploit metric properties of
the cameras to obtain the correcting homography H.

In the section 3.4, we discussed how the camera projection matrix can be
decomposed into several matrices which have a geometric meaning when the
reconstruction is in Euclidean frame. Specifically, we introduced the internal

calibration matrix:
f My S Zo

K= 0  fmy wo
0 0 1

Typical consumer cameras have practically perfectly square pixels and correctly
aligned lense system. The skew factor s thus should be nearly zero (since the
pixels are rectangles) and the aspect ratio m,/m, should be nearly 1.0 (since
the pixels are squares). Also, the principal point (xg, o) is typically located
approximately in the middle of the image. Choosing the image coordinate system
so that the image center has coordinates (0, 0) results in the following simplified
calibration matrix:

fmy 0 0
K=| 0 fm, 0. (4)
0 0 1

If we would obtain only projective reconstruction and perform decomposition
of the camera matrices into C,R and K, the upper-triangular matrix K would
generally not reflect this (for example, the entry in the position (1,2) would
not be approximately 0). Based on this, we can reject the incorrect projective
reconstructions — the ones that differ from the true one by more than just a
similarity transformation.
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We now introduce a remarkable geometric entity of P? called the absolute
conic, using which we can factor out the internal calibration matrices K; from the
camera matrices P;.

It should be intuitively clear that the image of the plane at infinity 7., taken
by a camera does not depend on the position of the camera’s center — when we
move without changing camera’s orientation or internal calibration, the points
located at infinity stay fixed. Remarkably, there is a set of points on the plane
at infinity that is not affected by both translation and rotation of the camera.
The projection of this set of points is determined only by the camera’s internal
calibration matrix K.

This set is a conic located on the plane at infinity and consists of purely
imaginary points. It is called the absolute conic Q.. In the metric frame, the
points X on this conic satisfy the following two equations:

X4:07
X3+ X5+X;=0.

The first equation restricts the conic to 7. The second one can be rewritten
as (X1, Xy, X3)I(Xy, Xy, X3)T = 0. Since a point lies on a conic C if and only if
x'Cx = 0, we conclude that the absolute conic lies on the plane at infinity where
it is represented by the skew-symmetric matrix C = I.

Both the conic and the plane at infinity can be conveniently represented using
the absolute dual quadric Q5,, which we now briefly introduce. For details and
proofs of the claims in the next paragraph, refer to [14, pg. 83| and [14, pg. 462].

The absolute dual quadric is algebraically represented using a 4 x 4 matrix of
rank 3. In the metric frame, it has the canonical form:

« I 0
=[50
The plane at infinity 7, is a null-vector of Q5 . Every plane 7 that satisfies
7TQ* 7 = 0 is tangent to Q.. In this way, the absolute dual quadric encapsulates
both Q. and 7,,. Thus, once this quadric is identified and moved to its canonical

position, the metric properties of the scene are corrected. The quadric projects
(like all dual quadrics) to a dual conic:

w* =PQLP".

This conic w* is dual to the projection of the absolute conic w and w* = w™1.

We now prove that the image of the absolute conic depends only on the
internal calibration of the camera used to project it:

Theorem 3.11.1. The image of the absolute conic Q projected using camera
P =KR [I —(NJ} is the conic w = (KKT)7L.
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Proof. To calculate the projection of the absolute conic, we first derive formula
for projecting the points located on 7.,. Since Q. is contained within 7., we can
use this to express its projection.

The points on 7., are of the form X = (X;,Xy,X3,0)T. Letting d =
(X1, X5, X3)T allows us to write the projection of the point X using a general

camera as: _
X:PX:KR[I _C}X:KRd.

Thus, we see that the mapping between the plane at infinity and the camera
image can be represented by homography H = KR. B B

Under a mapping x’ = Hx, a conic C transforms into C’ = H-TCH™!. Indeed,
xTC'x' = (Hx)TH TCH !'Hx = xTCx. Thus, the absolute conic Q. is mapped to
w=(KR)"TI(KR)"! =K TRR'K! = (KK")". O

Together with the claims about the absolute dual quadric, this result implies
w =KK' =PQ.P',
which — in the case of simplified internal calibration matrix (4) — is equal to:

(fmz)> 0 0
KK' = 0 (fmg)? 0
0 0 1

In this way, these equalities allow us to introduce constraints on Q% based
on our simplified calibration matrix K. In line with [23], we can write 4 linear
equations from every projection matrix in our scene:

(PQPT )11 —

This is a system of linear equations that allows us to solve for Q} . In the case of
an overdetermined solution, this can again be done by taking the singular vector
corresponding to the smallest singular value. The rank 3 constaint can be en-
forced using the SVD, as in section 3.7. Since a dual quadric Q* transforms under
homography H as HQ*H', the correcting homography is obtained by decomposing
the matrix as Q7, = HIH", which can be carried out using eigenvalue decomposi-
tion (see for example [14, pg. 580]). Discussion of proper preconditioning of the
linear system can be found in [24].

3.12 Robust estimation using RANSAC

In the previous sections, we already deal with a certain level of imprecision in
the input data by assuming that it is corrupted by Gaussian noise. However,
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normal distribution is not heavy-tailed and thus assigns nearly zero probability
to completely outlying data. This implies that if the user (or automatic matching
algorithm) accidentally marks, for example, a vertex incorrectly by 100px, it will
substantially affect the resulting reconstruction since such measurement will be
heavily penalised. In contrast to this, we would like our algorithm to be robust
against such outliers.

Thankfully, the algorithms used to build the initial solution can be adapted
so that they are robust and, as a side effect, even classify parts of the input as
inliers or outliers. The general paradigm that can achieve this is called RANSAC,
which is a short for random sample consensus®.

To robustly estimate a quantity, for example the fundamental matrix F, from
a strongly overdetermined set of measurements, we can proceed in the following

way:

1. Randomly pick a minimal subset of the input from which the esti-
mated quantity (e.g., F) can be determined.

2. Using this sample, estimate the quantity.

3. Go through all measurements and count how many of them ap-
proximately satisfy the obtained relation (for example, how many
pairs of corresponding points indeed satisfy the epipolar constraint
expressed by F within some precision).

4. Tterate steps 1-3 enough times and keep track of the sample that
resulted in the highest number of inlying measurements.

5. Estimate the quantity once again, this time using all the inliers in
the input data. Mark the rest of the input as outliers.

See [14, pg. 117] for a more detailed discussion of RANSAC, which includes
a derivation of the number of iterations (step 4) necessary to achieve a certain
probability (usually 99%) of picking a subset of the data unaffected by outliers.

1And also a word-play on the english word “ransack”, which means “to search thoroughly”.
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Chapter 4

Image processing techniques

The process of manually marking projections of vertices on photographs is de-
manding and the precision rarely better than several pixels. In this chapter, we
describe three methods — SIFT [20], MSER [10] and MSCR [11] — used to extract
matches automatically. When applied to suitable photos, these algorithms can
produce large number of correspondences, often with subpixel precision. All three
techniques are sparse feature matching algorithms. Their typical output, a set of
matches for a pair of images, is shown in figure 4.1.

Figure 4.1: Two views of a scene with a sculpture of Ema Destinnova. Corre-
sponding points found using the SIFT algorithm of section 4.1 are connected by
line segments.

Generally, to match two images of the same scene, these algorithms first ex-
tract features from the photos — for example corners or bright spots. Since the
feature detection is highly repeatable, the majority of the features should be de-
tected in both images. Each feature then has a descriptor assigned, typically a
high-dimensional real vector. The descriptors are constructed in such a way that
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they are (at least to a certain extent) affinely invariant. This implies that looking
at a feature from different viewpoints should result in the same (or very similar)
descriptor. Thanks to that, we can match pairs of photos by taking every feature
from the first photo and finding the feature with the nearest descriptor in the
second one.

This approach can be contrasted with dense matching algorithms, such as [25],
which try to match every image pixel, typically assuming that the scene has some
level of spatial consistency. Such amount of matches is an advantage for example
for visualization of the scene. Camera calibration on the other hand requires
smaller amount of reliable and precise matches. For this reason, we focus our
attention to sparse feature matching algorithms.

4.1 Scale-invariant feature transform

SIFT [20] is a very popular algorithm to generate image matches, commonly used
in software packages for panorama stitching, HDR photography, etc. Matches
obtained by this algorithm have been successfully used as input for camera cali-
bration in [26] and [6]. It produces very good results when the matched images
do not substantially differ in their orientation. This is because SIFT uses de-
scriptors that are invariant to rotation, scale changes, translation, illumination
changes and noise, but only partially invariant to a general affine transformation
of the image.

Figure 4.2: Features detected using SIFT. Each one is denoted by an arrow going
from feature’s location in the direction of its local orientation. The arrow’s size
is proportionate to feature’s local scale.
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It proceeds by taking a grayscale version of the image and extracting feature
points corresponding to centers of blobs in the photo. Local orientation and
scale is then assigned to each feature and invariant descriptors constructed using
these local frames. An example of the resulting set of features with their local
orientations and scales represented using arrows is in figure 4.2.

The feature detection is done using scale-space, which is a series of images
constructed by taking the original one and blurring it by subsequently larger and
larger Gaussian kernels. Refer to figure 4.3 for an example. At some point, the
image will get so blurred that it doesn’t make sense to perform the operations in
the original resolution. When this happens, we can downsize the image to 50%,
which speeds up scale-space generation and the operations to be performed on it.

i

Yy

Figure 4.3: Scale-space consists of subsequently more and more blurred images.

Neighbouring images in scale-space are then substracted. See figure 4.4 for
an example of how the resulting image could look like. For images blurred by
Gaussian kernels o7 and o5, the substraction results in a difference-of-Gaussian
image D:

D(l’, y) = (G(]?, Y, 01) - G($, Y, ‘72)) * [(.’13‘, y),

where * is convolution operator, I the grayscale image and G Gaussian kernel:

1 (22442 o2
G(fE,y,U):ﬁe( R
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As is shown in [20], the difference-of-Gaussian is connected to the Laplacian of
Gaussian and the difference image can thus be informally thought of as a second
derivative of the original image.

Figure 4.4: The difference of two neighbouring images in scale-space. The result-
ing image’s intensity is proportionate to the absolute value of the difference.

We then take the resulting series of difference images and find local extrema
in it — pixel positions, where the difference has a value strictly higher (or lower)
than all its neighbouring pixels (and also the corresponding pixels on neighbouring
difference images). Observe on figure 4.4 how the difference image has bright spots
in places where the original image has blobs of a certain size. This favored size
depends on how large was the convolution kernel used to generate the original pair
of blurred images: a difference image created by substracting a pair of images from
the end of the scale-space has local extrema in places where large blobs can be
seen in the original photo. In this way, we obtain points of interest corresponding
to blobs of all sizes.

The neighbourhood of each pixel of minimal or maximal difference is then fit-
ted by a quadratic function. By calculating extrema of these quadratic functions,
we obtain their positions with subpixel precision. Also, when the corresponding
quadratic function is shallow or narrow, the feature point is rejected as unsta-
ble. Such features have high probability of being affected by noise (the case of
shallow quadratic function) or of corresponding to edges in the scene (narrow
function), which we do not want to detect, since their appearance varies with
different viewpoints.

When the points of interest are computed, we look at the original image and
for every feature calculate the image gradient at its position, which establishes
local orientation and scale of the feature.
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In the second part of the computation, each feature is assigned a descrip-
tor, which characterises the appearance of the feature’s image neighbourhood.
This descriptor is constructed using the established feature scale and orientation
and thus doesn’t change after application of translation, rotation or scaling to its
image. Research in biology and psychology lead to the conclusion that image gra-
dients are of special importance for human object recognition. SIF'T descriptors
are based on this research and basically are just histograms of gradient directions
around feature’s position.

To create a descriptor for a feature, we first compute gradients for pixels
around its location (in the scale nearest to the one of the feature). Magnitudes of
these regions are then weighted by a Gaussian window centered on the feature’s
position. The samples are then divided into 4 x 4 subregions and for each subre-
gion a histogram of 8 gradient directions is calculated. The descriptor is formed
by concatenating values from these histograms into 128-dimensional real vector.
See [20] for more details about the descriptor construction, such as achieving
invariance to illumination changes.

Matching features of an image pair is typically done by taking each feature
in one image and performing a nearest neighbour search (in Lg-norm) through
the descriptors of features in the other photo. It is advisable to also consider the
feature with the second nearest descriptor. If the distance of this second candidate
descriptor is similar to the nearest one, we can’t reliably decide which of the two
candidates is the match. Thus, a match is typically accepted only if the ratio of
the first and second descriptor distances is less than 0.8. This is also elegant way
to avoid matching repeating scene features that commonly result in mismatches.
According to [20], this technique (called feature space outlier rejection) rejects
90% of the false matches while discarding only 5% of the correct ones.

4.2 Maximally stable extremal regions

Maximally stable extremal regions are image regions that are significantly brighter
or darker than their neighbourhood. Their detection can be done in a highly
repeatable way so that the same regions are detected even when their image
is deformed by any affine (or even any continuous) transformation. They were
introduced in [10] for grayscale images and eventually generalised for color images
as MSCRs [11]. The figure 4.5 shows an input image and the detected regions
overlaid over its grayscale version.

Suppose that the grayscale image is represented by a function I :  — [0..255],
where 2 = [1..W] x [1..H] is the set of all pixel coordinates. We now describe a
watersheddding process used to detect MSERs in 1.

For a threshold ¢ € [0..255], we divide the set of pixel positions into sets B
(black) and W (white):

B={xecQ:I(z)<t},W=0\B.

Our algorithm starts with ¢ = 255. All pixels are thus contained in the set
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Figure 4.5: Input image for MSER detection (left) and the slightly blurred
grayscale version of the image used during the computation with the contours
of the resulting set of regions highlighted (right).

B and the set W is empty. The corresponding thresholded image is entirely
black. When we start to decrease t, white spots start to appear and grow as
more and more pixels fall above the threshold level. Individual regions will start
to merge and eventually form one white region covering the entire image at the
end of the computation. All pixel positions then belong to the set W. Figure 4.6
demonstrates this evolution.

White and black regions in the individual thresholded images are called ez-
tremal regions. From the set of all regions, we want to pick only the ones that
have the highest probability of being detected on different views of the scene.
MSER algorithm achieves this by choosing the regions that do not substantially
change their size across several intensity threshold levels. Specifically, the algo-
rithm looks at the evolution of each region and observes how fast it grows in each
step. When it grows less than a given percentage of area for at least a given
number of levels, region’s contour from the step of minimal growth is saved.

To obtain only the most stable regions, several filtering methods can be ap-
plied. The input image is usually blurred using Gaussian kernel to account for
noise. Large regions are typically immediately discarded, since they have low
probability of being planar, which makes constructing descriptors for them diffi-
cult. Finally, long and narrow regions are again rejected, since it is improbable
that they can be seen without occlusions on other views of the scene.

Details about MSER algorithm can be found in the original article [10].

While the algorithm from the previous section has a standard generally used
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Figure 4.6: The input image from figure 4.5 thresholded by decreasing t. Observe
how the building’s windows form very stable regions clearly visible on several
thresholded images.

descriptor available, the issue of matching MSERs is more complicated. One
suggested approach is to reuse the SIFT descriptor [12] to represent the region’s
shape or texture. The matching method introduced in [21] uses an affine normal-
ization of the region which, coupled with orientation assignment, allows to use
standard intensity-normalised cross-correlation for the matching.

4.3 Maximally stable color regions

The MSER regions are detected in a grayscale image which has the disadvantage
that regions with different colors (for example, red and green) can be assigned
similar intensity and subsequently not being recongnised as separate regions.
This leads us to a generalisation of MSER for color images, introduced as MSCR
in [11], which we now briefly introduce.

We again take the image function I, now defined as I : Q — R®. In this way,
the image function assignes RGB color values to all pixel positions 2. We also
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define a graph G with image pixels as it’s vertices and edges E defined in the
following way (note that x and y are 2-dimensional vectors):

E={{xyle®: |x-yl=1}

where |x — y| is a Manhattan or Euclidean distance of pixel coordinates. The
edges thus connect the neighbouring pixels. Finally, we assign a weight g(x,y)
to every edge. In line with [11], we use the Chi squared measure to calculate the
weight between neighbouring pixels x and y:

where [j(x) represents the value of the k-th color channel of the pixel x.

The evolution process for color images is demonstrated in figure 4.7 and pro-
ceeds in the following way. We consider a series of subgraphs of G with edge
sets By C E. We denote this subgraph as G;. The connected components of G;
are referred to as regions. We start with E;,¢ = 0 and gradually increase t. As
we do this, new edges start to appear in the subgraph G; and regions grow and
merge. Analogously to the MSER algorithm, the detected stable regions are the
ones nearly unchanged in size across several thresholding levels .

Figure 4.7: MSCR evolution process for the input image from figure 4.5. Regions
for increasing edge weight thresholds are depicted using different colors, with
trivial single pixel regions being left black.

Because MSCRs are based on color and not only on the combined intensity
of all three color channel values, they are less affected by shadows in the scene,
which in the case of MSER detection often split the affected region into several.
Recommendations for region filtering mentioned at the end of the previous section
apply to MSCR regions as well. The same matching methods used for MSERs
can be utilized to establish correspondences also between MSCRs.
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Chapter 5

Semi-automatic approach

The principal theme of this thesis is using image processing techniques to help
the user reconstruct 3D scenes as fast as possible. The most demanding and
time-consuming part of the workflow seems to be entering correspondences for
camera calibration, since they have to be extremely precise to achieve a quality
reconstruction. We thus turn our attention to obtaining these matches automat-
ically and adjusting the camera calibration algorithms so that they are robust
against gross outliers which often arise when using automatic image registration.
When the matches are available, they can be also used to estimate the positions
of objects on photos where they haven’t been marked yet. This is demonstrated
in section 5.4, where we show that it is possible to automatically place a polygon
on photos after it has been marked on at least one of them.

Aa a result of this thesis, a complete software solution for image-based mod-
eling has been created. This open source project, called insight3d, is aimed at
general users who wish to reconstruct their favorite objects or scenes in 3D from
several photos. The program can be freely downloaded from the project’s web-
site!. Versions for both Windows and Linux are available.

5.1 Matching an image pair

We now descibe details of the method used to obtain matches for an image pair.
We choose to use the SIFT algorithm [20] described in section 4.1 because of
its well-defined and well-tested feature descriptors. As stated in the previous
chapter, SIFT keypoints are assigned a 128-dimensional vector as a descriptor
and feature matching is performed using the nearest neighbour search among the
features in the second image.

However, a typical 4Mpx image results in roughly 2-15 thousand features
and such high-dimensional nearest neighbour search is theoretically problematic.
Taking every feature in the first image and performing exaustive search over all
descriptors in the second image results in several minutes long computation times

http://insight3d.sourceforge.net/ — its offline version is located on the attached DVD
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(on a typical computer with 2GHz single-core CPU). Since the task is trivially
parallelizable, multiple cores and SIMD instruction sets like SSE2 can be easily
used to speed up the computation, but the required time is still unreasonably
long since we typically want to match every possible pair of photos, which results
in quadratic number of matching rounds. General approximate nearest neigh-
bour search (using a library such as ANN [1]) is also problematic, since these
techniques generally work effectively only when the vectors have a dimensional-
ity of roughly up to 10. For our 128-dimensional problem, typical approximate
algorithms result in unacceptable running times even for large values of the tol-
erated error. However, as described in [20], approximate search using kd-trees
can be made effective by limiting the number of explored kd-tree nodes to, say,
200. This results in sometimes returning a strongly suboptimal vector. Since the
algorithms in computer vision are typically robust to small number of outliers,
this doesn’t cause significant problems. Typically, this brings the time necessary
to match an image pair down to roughly 10-20 seconds.

5.2 Guided by fundamental matrices

We found that both the speed of the image-pair matching algorithm and the num-
ber of correspondences returned can be significantly improved by appropriately
using a technique called guided matching.

The main idea is to perform the matching in the typical way and then use
the correspondences to estimate the fundamental matrix for the image pair. The
matching is then repeated, but this time for each feature from the first image we
consider only the points that lie on the estimated epipolar line in the other image
as the matching candidates. This results in a higher number of matches, since
it is less likely that the match will fail feature space outlier rejection described
at the end of section 4.1 (two features with similar descriptor would have to be
located on the same epipolar line).

To increase the matching speed, we have implemented this technique in the
following way. First, enough correspondences to robustly estimate the fundame-
nal matrix are obtained using standard matching approach based on kd-trees.
We do not try to match all features, since that would take away all the compu-
tational time that we try to reduce. The fundamental matrix for this partially
matched image pair is then estimated. After this, we divide the second image into
buckets forming a 2D grid. Each bucket has the features that lie in it assigned.
When matching a feature from the first image, we compute its epipolar line and
check which buckets lie near it and thus have a chance of containing potential
matches. We then iterate through these buckets and try to match the original
feature against the ones located inside each of the selected buckets. We have
empirically found that buckets of size 110px result in optimal running time for
typical 4Mpx photos. This reduces the matching time to several seconds.
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5.3 Camera calibration

After the images are matched and tracks extracted, we need to calibrate the
cameras. This is potentially difficult, since the input data contain some amount
of gross outliers and the computation is inherently numerically unstable.

To achieve certain level of robustness, we arranged the individual algorithms
described in sections 3.7 to 3.11 in the following way:

First, we need to bootstrap the construction of the initial solution by calcu-
lating projection matrices for a pair of images using the fundamental matrix. We
take a look at the image pairs in our dataset and sort them according to the num-
ber of correspondences in decreasing order. We then randomly pick one of the
top n image pairs (n is a parameter of our procedure). After that, we estimate
the fundamental matrix using the linear algorithm from section 3.7. To robustify
the computation, the RANSAC paradigm is applied. Finally, we triangulate the
vertices visible on both of our images.

If there still are uncalibrated photos in our dataset, we perform camera re-
section (described in section 3.9). We sort the uncalibrated photos according to
the number of vertices with estimated position and randomly pick one of the top
n photos. The projection matrix of this photo is then estimated using camera
resection.

After each calibration step, we recalculate the positions of the vertices to
take into account the newly gained knowledge. Triangulation is performed using
the algorithm described in section 3.8, with the provision that the RANSAC
paradigm is again applied to robustify the computation. As mentioned in section
3.12, this gives us also the estimate of which measurements are inliers and which
outliers. This information is saved and the following steps of the calibration are
then performed only using the inlying measurements.

The algorithm continues by resecting new photos and reestimating the ver-
tices until there are no uncalibrated photos. To achieve better stability, several
iterations of the nonlinear optimization described in section 3.10 are performed
with a certain probability (another parameter of the procedure) after each step.
At the end of the computation, the constructed initial solution is refined using
nonlinear optimization and projective reconstruction is obtained.

Autocalibration is then carried out. Here, we again apply RANSAC using the
assumption that the cameras have principal point located in the middle of the
image. This is done by picking three cameras randomly, estimating the metric
structure of the scene from the constraints described in section 3.11, applying
correcting homography to all cameras and extracting the resulting internal cali-
bration matrix from each corrected projection matrix. The quality of the auto-
calibration result is then judged by the number of cameras that really do have the
principal point located in the middle of the image (with some tolerance, typicaly
at most several hundred pixels away from the image center). Such application of
RANSAC to autocalibration ensures that the metric structure was not established
incorrectly due to incorrectly estimated cameras in the projective reconstruction.
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The randomization of the initial solution construction helps when there is a
danger that at some point the input data for one of the elementary algorithms are
degenerate (see [14] for details about degenerate configurations). In such a case,
the result is not properly constrained and the computation results in incorrect
output. When this happens, the user still has a chance of obtaining the correct
solution by running the calibration algorithm again, hoping that the (probably
different) computation path will not lead to a degenerate configuration again.

A demonstration of the precision we are able to obtain using our calibration
method can be found in figure 5.1.

Figure 5.1: Calibration of a scene where camera moving in a circle around a
sculpture. Automatically reconstructed point cloud is seen in the middle. The
first few photos were taken from greater distance using longer focal length. The
circle is properly closed even though the first and the last photo in the sequence
were not matched and thus had no correspondences between them. Build-up
error thus doesn’t significantly affect the calibration.

5.4 Transfer of a polygon using homography

Suppose that the user marked several vertices on one image and joined them into
a polygon. Suppose further that the images have been matched and the auto-
matically obtained matches cover more or less the whole photo. This allows us to
help the user mark this polygon on other images. We can take the automatically
generated points from the inside of the polygon and look where they are located
on another image.

Since the polygon should be planar, it should be possible to transfer its point
on the other image using a planar homography H. The estimation of the homog-
raphy is analogous to the estimation of the projection matrix during the camera
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Figure 5.2: The polygon in the image on the left has been marked manually.
When the user of insight3d switches to an image where the polygon is not fully
marked and presses spacebar key, the application uses robust estimation to cal-
culate the position of the polygon on the current image.

resection (see section 3.9). Once again, we apply RANSAC paradigm to estimate
the homography robustly. An example of a polygon and its automatically esti-
mated counterpart is in figure 5.2. If the user already marked one or more of the
polygon’s vertices on the second image, we enforce the position of these vertices
as a strong constraint (thus, their position is not changed).
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Chapter 6

Future work

We have described and implemented methods used to reconstruct 3D scenes from
images. Sparse feature matching algorithms have been employed and the camera
calibration algorithm robustified so that completely automatic calibration and
generation of a precise 3D pointcloud of the scene is possible. The software
solution was successfully tested on datasets obtained by both compact digital
cameras and both APS-C and full-frame DSLRs.

Possible future improvements are twofold:

The camera calibration algorithm can be further improved and robustified.
To achieve better precision, projective bundle adjustment and autocalibration
should be followed by the Euclidean bundle adjustment — that is, a nonlinear
optimization in which the cameras have constraints like zero skew strongly im-
posed. This might help when the scene is in a near-degenerate configuration (e.g.,
is nearly planar). Furthermore, degenerate configurations could be detected au-
tomatically using the covariance matrix, Monte Carlo estimation or by checking
the second smallest singular value in the SVD. Implementing MSER or MSCR
detection could help when matching photos of poorly textured scenes or when
there are significant rotational changes between views.

A significant improvement in terms of user friendliness would be to imple-
ment Canoma-style modeling (described in section 2.4), where the user can add
primitives like cubes or pyramids into the scene. Adding objects with known
geometry (and Euclidean properties) would have significant advantages for auto-
calibration, since these properties could be used to estimate the metric structure
of the scene. It would also help the user create complete reconstructions of sym-
metric objects even when they are not visible from all sides. Since this happens
very often in practice, implementing the ideas of [8] should be a priority for the
future development of the project.
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Appendix A

Guidelines for optimal results

The photos to be used in insight3d can be taken from arbitrary positions and there
is no need to perform any measurements when making them. The application
figures all of that automatically. However, several important rules should be
remembered to achieve good results. Photos in figure 2.4 are an example of a
dataset that allows for a precise detailed reconstruction.

e The photos should be focused (not blurred).

e There should be large overlaps between neighbouring photos. Note
how most of what can be seen on any of the photos in figure 2.4 can also
be seen on the next one.

e Planar scenes should be avoided. When everything on the photo lies on
a single plane in space, like on the following photo, insight3d can’t properly
determine the focal length.
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e There should be only limited angle difference between subsequent pho-
tos. When moving around an object, the user shoould take a photo every
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15-25 degrees. Again note the photos 2.4 and how with each photo we look
at the building from only slightly different angle.

It is optimal to shoot scenes with lots of unique details and textures.
Old buildings and sculptures can be processed almost routinely, while blank
walls and clean cars have low chance to be automatically matched. But if
automatic matching fails, insight3d offers tools to enter matches manually.

The photos shouldn’t be cropped. The application needs to know
where was the original image center.

Rule of 3. Every part of the scene to be reconstructed should be visible
on at least 3 photos.
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Appendix B

Software architecture

The algorithms described in this work have been implemented in a software pack-
age written in C++, which is available (along with the user documentation) on
the attached DVD and can be also downloaded from the internet. The source
code is licensed under the GNU AGPL 3.0 license. Below is a brief description
of the organization of the code into modules and individual source files.

e Core
core_*.cpp
— Handles basic interaction with the operating system.

— Provides routines and macros for creating, updating and releasing dy-
namic structures.

— Defines additional basic math functions.
— Error management.

e Geometry
geometry_*.cpp

— Defines structures to store vertices, points, meta-data about images,
polygons, calibrations and indexing structures.

— Provides methods to manipulate these structures and validate the con-
sistency of their content.

e MVG
mvg_* . cpp
— Provides implementation of multiple view geometry algorithms, such

as the camera resection, triangulation, finite camera decomposition,
data normalization and autocalibration.

— These libraries have only one dependency — the OpenCV library, which
is commonly used in computer vision programs. Moreover, all func-
tions take their arguments in the manner common to generic OpenCV
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routines. This part of the source code is thus readily reusable in other
computer vision programs.

e Tool framework
tool_core.cpp

— Provides routines for creating tools such as the “Selection and zoom”
tool or the “Points creator” tool. This separates the source code of
tools from routines provided by the GUI library we decided to use. The
resulting code is therefore more readable, shorter and independent of
the chosen GUI toolkit.

e Tools
tool_*.cpp

— Every tool available to the user has a separate source file. The tools
defined in the current version are: coordinates (aligns coordinate
system with selected camera), extrude (extrudes polygons to auto-
matically detected ground), matching (performes automatic sparse
matching of images), plane_extraction (robustly finds main plane in
the pointcloud of the model), points (lets the user mark correspond-
ing points on submitted images), polygons (used to join vertices into
polygons), resection (camera resectioning), selection (used to se-
lect points), triangulation (triangulates the position of the vertices
from their projections images obtained by calibrated cameras).

o Ul
ui_*.cpp

— Provides routines for displaying the content of the data structures in
OpenGL window. Separate source files are devoted to rendering the
context popup window (which displays thumbnails from other images),
selection boxes, symbols for points, point clouds, etc.

— UI module also handles the events sent by the GUI toolkit and even-
tually sends the events for example to the tool framework.
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